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Abstract 

A computer program has been written to charac- 
terize the coordination polyhedra of metal cations in 
terms of their volumes and polyhedral elements, i.e. 
corners, edges and faces. The sharing of these cor- 
ners, edges and faces between polyhedra is also 
quantitatively monitored. In order to develop the 
methodology, attention is focused on ternary oxides 
containing the A13÷ ion, whose structures were 
retrieved from the Inorganic Crystal Structure 
Database (ICSD). This also permits an objective 
assessment of the applicability of Pauling's rules. The 
influence of ionic valence on the structures of these 
compounds is examined, by calculating electrostatic 
bond strengths. Although Pauling's second rule is 
not supported in detail, the calculation of oxygen-ion 
valences reveals a basic structural requirement, that 
the average calculated oxygen-ion valence in any 
ionic oxide structure is equal to 2. The analysis is 
further developed to define a general method for the 
prediction of novel chemical compositions likely to 
adopt a given desired structure. The polyhedral 
volumes of this structure are calculated, and use is 
made of standard ionic radii for cations in sixfold 
coordination. The electroneutrality principle is 
invoked to take valence considerations into account. 
This method can be used to guide the development 
of new compositions of ceramic materials with 
certain desirable physical properties. 

Introduction 

An understanding of the interplay between chemical 
composition, crystal structure and the physicochemi- 
cal properties of crystalline ceramics is of fundamen- 
tal interest in solid-state science. Naturally there are 
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several legitimate approaches towards gaining such 
an understanding, but the method to be adopted here 
is based on chemical, rather than physical ideas. A 
starting point for the approach is given by the four 
rules postulated by Pauling (1960), in connection 
with the structure of complex ionic crystals. 

(i) A coordinated polyhedron of anions is formed 
about each cation, the cation-anion distance being 
determined by the radius sum and the ligancy of the 
cation by the radius ratio. 

(ii) In a stable ionic structure the valence of each 
anion, with changed sign, is exactly or nearly equal 
to the sum of the strengths of the electrostatic bonds 
to it from the adjacent cations. 

(iii) The presence of shared edges and especially of 
shared faces in a coordinated structure decreases its 
stability; this effect is large for cations with large 
valence and small ligancy. 

(iv) In a crystal containing different cations those 
with large valence and small coordination number 
tend not to share polyhedron elements with each 
other. 

Fundamental to Pauling's rules are the ionic attri- 
butes of size, valence and charge. In a large number 
of cases, they give a satisfactory description of the 
relationship between chemical composition and 
crystal structure, in particular when the bonding is 
predominantly ionic in character. There are excep- 
tions, however, in which the rules are not satisfied, 
and several authors have defined modifications to 
them. The first rule can only be regarded as qualita- 
tively correct, since most cations are known to have 
a variety of coordination numbers, each with a dif- 
ferent associated cationic radius (Shannon, 1976). 
The desire to refine the second rule has given rise to 
the bond-valence method (Brown, 1981), in which 
the valence of a metal-oxygen interaction depends 
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on the separation of the two ions. Although this 
refinement is helpful in dealing with asymmetric 
coordination polyhedra and the incidence of 
covalency in ionic systems, it also introduces an extra 
level of complexity into Pauling's formalism. Since 
the ionic valences no longer depend merely on topo- 
logical considerations (numbers of coordinating 
ions), but rather on the separations of cations and 
their coordinating anions, it is arguable that the 
simplicity of Pauling's rules, in itself a major advan- 
tage, is lost in the bond-valence method. The third 
and fourth rules originate from the conception that 
metal oxides are stabilized largely by Coulombic 
forces. This is a useful starting point, but the 
assumption is inadequate for the whole range of 
metal oxide structures, in which covalency plays a 
role of varying importance. 

Clearly if Pauling's rules are to be used as a theory 
to predict the crystal structures of metal oxides, they 
have serious deficiencies. However, their simplicity 
and ease of application suggest that they should, at 
least, be considered as a framework within which the 
crystal structures of metal oxides can sensibly be 
discussed. This viewpoint is developed in this paper, 
by characterizing the known room-temperature 
crystal structures of ternary oxides containing 
aluminium. This choice is made for several reasons. 
To describe the approach systematically, it is desi- 
rable to confine attention to a relatively small set of 
compounds, so that the treatment is well focussed. 
Aluminium is chosen as the cation common to all 
structures because it is well know to exist in both 
tetrahedral and octahedral coordination. The empty 
d and f shells in the aluminium ions also permit a 
fixed valence of + 3 to be assigned to the ion in all 
the structures to be examined. 

Method 

A search was carried out for the structural data of all 
ternary oxides containing aluminium, MpAlqOr, 
which are contained in the Inorganic Crystal Struc- 
ture Database (ICSD) at the SERC Daresbury 
Laboratory. The structures obtained were sub- 
sequently divided into five families, depending on 
their chemical composition (XA103, X3A15Oi2, 
X'A1204, XA102 and XA14OT). Families containing 
only one structure were discarded, since this study is 
essentially comparative, and it is necessary to keep 
the amount of data analysed within manageable 
proportions. The data thus obtained were used as 
input to a Fortran77 computer program written 
specifically to characterize cation coordination 
polyhedra in ionic crystals (Thomas, 1989a). The 
program was run on an Apollo DN3000 workstation 
at the University of Leeds, and performs the fol- 
lowing sequence of operations. 

Step 1. Identification of the vertices of cation coordi- 
nation polyhedra 

These vertices correspond to the oxygen ions coor- 
dinating each cation in the unit cell. Translationally 
related unit cells are generated, in order to identify 
explicitly all the coordinating oxygen ions of each 
cation. Usually a consideration of cation-oxygen 
distances alone is sufficient to define unambiguous 
polyhedra. However in a few instances, asymmetry 
of coordination requires a more careful definition of 
coordination polyhedra. 

Step 2. Identification of the faces of cation coordina- 
tion polyhedra 

Once the vertices are known from step 1, faces are 
identified by searching for planes of oxygen ions 
which form external surfaces of the polyhedron. The 
tolerance permitted in testing for the coplanarity of 
oxygen ions is an adjustable parameter, but a value 
of _+ 0.03 A is typical. 

Step 3. Identification of the edges of cation coordina- 
tion polyhedra 

Once the faces are known from step 2, the edges of 
each face are identified by the following method. The 
centre of coordinates of a face is calculated by taking 
the mean of the x, y and z coordinates of each 
vertex. A vector is drawn from each vertex to this 
centre of coordinates, and the angles made by these 
vectors with a fixed direction in the plane of the face 
are calculated, in order to define a cyclic sequence of 
vertices. The edges of the face correspond to the lines 
joining the vertices, when taken in cyclic order. 

Since each edge in a closed polyhedron is shared 
between two faces, each individual edge will be 
generated twice in this procedure. This feature is, in 
itself, a useful criterion to check that the generated 
polyhedron is closed. If a generated edge is not 
shared between two faces, then the generated poly- 
hedron is in error. 

Step 4. Calculation of the volumes of cation coordina- 
tion polyhedra 

The method employed has been described earlier 
(Thomas, 1989b), apart from a minor refinement in 
dealing with non-triangular faces where the consti- 
tuent oxygen anions are not strictly coplanar. A 
problem can arise in calculating the volume contri- 
bution of such faces, particularly when they are 
shared between two adjacent cation coordination 
polyhedra. A successful way of dealing with this 
problem has been developed, whereby each face is 
divided into as many constituent triangles (subfaces) 
as there are edges in the face. Each triangle has an 
edge as its base, with its third vertex given by the 
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centre of coordinates of each face, as defined in step 
3. The total volume contribution of the face is taken 
as the sum of the volume contributions of the consti- 
tuent triangles. In the earlier method (Thomas, 
1989b), a careful inspection of polyhedral volumes 
was necessary, in order to ensure that small regions 
of space were not counted as contributing to the 
volumes of two adjacent polyhedra. The present 
method removes the possibility of this occurring, 
since the subfaces of both adjacent polyhedral faces 
are identical to each other. 

The algorithm used to calculate polyhedral volume 
is summarized in equations (1) and (2). 

V~= ~. Vj (1) 
) 

where 

Vj =  (Ajhj). (2) 

In these equations, V~ is the volume of polyhedron i, 
Vj is the contribution to this volume from (sub)face j, 
Aj is the area of (sub)face j, and hj is the perpen- 
dicular distance of the plane of (sub)face j from the 
centre of the polyhedron. 

Step 5. Evaluation of  the fraction of  crystal space 
enclosed within cation coordination polyhedra 

This fraction is denoted by f~nc, where , 

fenc= Z VJVu, (3) 
i 

V; is the volume of the ith polyhedron, and Vu is the 
volume of the unit cell. The summation is performed 
over all the polyhedra in the unit cell. In the 
perovskite structure, for example, fenc = 1 (Thomas, 
1989b), indicating that there are no inter-polyhedral 
voids present. 

Step 6. Monitoring of faces shared by cation coordina- 
tion polyhedra 

A check is performed for faces of individual 
polyhedra indentified in step 2 which are shared with 
adjacent polyhedra. According to Pauling's third 
rule, shared faces destabilize a given structure, but 
the fourth rule implicitly allows face-sharing, pro- 
vided that it does not take place between polyhedra 
of low coordination number and ions of high 
valence. 

Step 7. Monitoring of edges shared by cation coordi- 
nation polyhedra 

A check is carried out for polyhedral edges shared 
between polyhedra. Although Pauling's third rule 
indicates that shared edges are destabilizing, the 
extent of this destabilization is less than that due to 
shared faces. 

Step 8. Identification of  vertices shared between adja- 
cent polyhedra 

A three-dimensional structure necessarily has 
shared polyhedral vertices, unlike the case for shared 
faces and edges. The manner in which vertices are 
shared is the structural characteristic to which 
Pauling's second rule refers. Since each polyhedral 
vertex is located at an oxygen ion, it follows, from 
Pauling's rule, that the number of polyhedra sharing 
a common vertex is directly related to the electro- 
static bond strengths within those polyhedra. 

For a cation coordination polyhedron, i, with 
cation valence vc,~ and ni vertices, each intra- 
polyhdral cation-oxygen bond has a strength of 
vc, i /n i. Pauling's second rule states that, for a metal 
oxide, the valence of an oxygen ion, Vo, shared 
between Np polyhedra is equal, or nearly equal to 2, 
where 

Vo = Z vcj/ni. (4) 
i = 1  

Thus the validity of Pauling's second rule can be 
staightforwardly tested by calculating the sum in 
equation (4) at each shared vertex. 

Step 9. Evaluation of the total oxygen-ion valence of  
the unit cell 

According to the electrostatic model of an ionic 
crystal, each ion is assigned an integral point charge, 
such that the sum of the magnitudes of the anionic 
charges (valences) in a unit cell is equal to the sum of 
the magnitudes of the cationic charges (valences) in 
that cell. This is a statement of the principle of 
electroneutrality. The total oxygen-ion valence of a 
unit cell, calculated from equation (4), is a sum- 
mation over all adjacent cation-anion pair inter- 
actions, with the strength of each interaction 
determined by the valence and coordination number 
of the cation. Consequently, a given cation, i, contri- 
butes to n; pair interactions, and the net contribution 
of that cation to the total oxygen-ion valence is ni x 
vc.Jni = Vc, i. Thus the total calculated oxygen-ion 
valence, as well as the actual total oxygen-ion 
valence, is equal to the sum of the cationic valences. 
This result has two important consequences. First, a 
routine check that this total valence, calculated from 
equation (4), is equal to the sum of the cationic 
valences is a means of ensuring that the structural 
data being analysed are correct. Secondly, any ionic 
structure must satisfy the requirement that its total 
oxygen-ion valence, calculated from electrostatic 
bond strengths as defined in equation (4), is equal to 
the sum of the cationic valences. This is a concise 
method of articulating a basic structural 
requirement. 
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Chemical 
formula 

XAIO3 

X3AlsOt2 2.4 

XAI204 2"0 

[ 0  2- ]/[AI 3 ÷ ] 

3.0 

Table 1. Crystallographic data and polyhedral volumes of compounds studied 

Space 
X group Nx Cx NA~ CAt Vx (A 3) VA~ (A, 3) Vx/VAS fe~ r~ ~ (A) Re£  a 

La R3m I 12 I 6 45-33 9-07 5.00 1.000 1-032 ( 1 ) 
La R~m 2 12 2 6 45.40 9-08 5.00 1.000 1.032 (2) 
Pr R]m 2 12 2 6 44-37 8-87 5.00 1.000 0.99 (2) 
Nd R3c 6 12 6 6 43.72 9.03 4.84 1.000 0.983 (3) 
Sm Pnrna 4 12 4 6 43.18 9.12 4.73 1.000 0.958 (4) 
Y Pnma 4 12 4 6 41.60 9.30 4.47 1.000 0.90 (5) 
Y P6flrnmc 2 8 2 5 20.17 7.11 2.84 0.442 0.90 (6) 
Sc Pnma 4 9 4 6 25.21 9-53 2.65 0.749 0.745 (7) 

Tb la3d 24 8 16 6 23.10 9.30 2.48 0.446" 0.92 (8) 
24 4 2.79 8.29 

Ho la3d 24 8 16 6 22.80 9.72 2.35 0-444 0-901 (8) 
24 4 2.72 8'38 

Y la3d 24 8 16 6 22-85 9.40 2.43 0.443 0.90 (9) 
24 4 2.81 8.13 

Lu la3d 24 8 16 6 21.62 9.63 2.25 0.438 0.861 (10) 
24 4 2.73 7-92 

Ba P63 6 12 16 4 70.84 2.79 b 25.39 0.722 1.35 (11) 
2 12 67.31 24.13 

Ba P6322 2 9 4 4 41.76 2-81 14.86 0.455 1.35 (12) 
Pb PI 2 6 4 4 21.61 2.75 h 7.86 0.274 1.19 (13) 
Sr P2j 2 6 8 4 20-63 2.74 h 7-53 0-266 1.18 (14) 

2 6 19.42 7.09 
Ca P2fln 4 12 24 4 60.06 2-74 h 21.92 0-414 1.00 (15) 

4 6 17.53 6.40 
4 6 16.75 6.11 

Zn Fd3m 8 4 16 6 3.80 9-15 0-416 0.334 0-74 (16) 
Cu Fd3m 8 4 16 6 3-59 ~ 9'45 ~ 0-380 0.34t 0-73 (17) 
Co Fd3m 8 4 16 6 3.77 9-24 0-408 0.336 0.725 (18) 
Mg Fd3m 8 4 16 6 3.64 9-38 0-388 0.340 0.72 (19) 
Ni Fd3m 8 4 16 6 3"04 c 10-24' 0.297 0.361 0.69 (17) 
Be Pnma 4 4 4 6 2.19 9.52 0.230 0.360 0.45 (20) 

4 6 8.84 0.248 

XAIO2 2.0 

XA1407 1.75 

Rb Fd3m 8 12 8 4 59.29 2"58 23.000 1.000 1.52 (21) 
TI R~m 6 12 6 4 57.12 2.48 23.000 1.000 1.50 (22) 
Na R~rn 3 6 3 6 15-88 9"25 1.717 0.667 1-02 (23) 
Cu P6flmmc 2 2 2 6 - 9-15 - - 0.77 (24) 
Cu R~rn 3 2 3 6 - 9-08 - - 0.77 (25) 
Li P4j2~2 4 4 4 4 3.85 2.79 1.383 0.159 0.76 (26) 

Sr C2/c 4 7 8 4 23.37 2-78 8-40 0-221 1.18 (27) 
8 4 2.74 8.54 

Sr Cmma 4 10 4 6 33.10 8.84 3'74 0.446 1.18 (28) 
4 4 1.72 19.19 
8 4 1.68 19.65 

Ca C2/c 4 7 8 4 21.16 2.74 7.72 0.217 1-00 (29) 
8 4 2.73 7.75 

Cu2 F~3m 4 12 16 4 55-13 2.87 19.21 0.580 0-77 (30) 
4 6 10.13 3.53 

A1203 1'5 - R~c - - 12 6 - 9'08 - 0"427 - (31) 

Notes: (a) The references, in CODEN form, are as follows: (1) K R I S A  7 408 1962; (2) A C C R A  9 1019 1956; (3) A C S C E  39 673 1983; (4) J S S C B  4 1 i 1972; 
(5) M R B U A  l0 85 1975; (6) C O R E A  257 867 1963; (7) J G R E A  80 3363 1975; (8) A C B C A  25 1853 1969; (9) K R I S A  21 211 1976; (10) A C C R A  19 971 
1965; (l  l) Z A A C A  451 40 1979; (12) B U F C A  88 413 1965; (13) Z A A C A  488 38 1982; (14) Z A A C A  475 205 1981; (15) J I N C A  38 983 1976; (16) Z E K G A  
124 275 1967; (17) JSSCB 60 l 1985; (18) A C B C A  34 1093 1978; (19) K O B Z A  16 77 1983; (20) P C M I D  14 426 1987; (21) C O R E A  259 3769 1964; (22) 
Z E N B A  27 1567 1972; (23) I N O C A  7 443 1968; (24) Z E K R D  165 313 1983; (25) A S B S D  39 564 1983; (26) A C C R A  19 396 1965; (27) A C B C A  28 2625 
1972; (28) A C B C A  38 889 1982; (29) A C B C A  26 1230 1970; (30) M O C M B  l l2 51 1981; (31) P S S A B  87 425 1985. (b) Average value taken in this structure 
of  lower symmetry. (c) X a n d  Al ions disordered. 

Values of polyhedral volumes and volume ratios 

Crystallographic and compositional data of the 
compounds are given in Table l, together with poly- 
hedral volumes and their ratios. The data are divided 
into compositional families, which are arranged in 
descending order of [O 2-]/[A13+ ], i.e. the ratio of the 
molar concentration of oxygen ions to the molar 
concentration of aluminium ions. Considerations of 
charge neutrality dictate that this ratio decreases as 
the valence and/or relative concentration of the X 
cation decrease, until in alumina, A1203, where no X 

cation is present, [O2-]/[A13+] = 1"5. Within each 
compositional family, the compounds are arranged 
in order of descending r vl, which is the standard 
radius of the X cation when coordinated 
ocatahedrally (Shannon, 1976). This quantity is 
taken to represent 'relative ionic size' in a quan- 
titative manner. 

The columns headed Nx, Cx refer to the number 
of X cation coordination polyhedra in the unit cell 
and the number of corners (vertices) in each poly- 
hedron. NAb CA1 refer likewise to aluminium coordi- 
nation polyhedra. If a particular structure occupies 
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more than one row in the table, then either the X or 
the A1 cations have more than one type of coordina- 
tion polyhedron. For example, in all X3A15O12 com- 
pounds (garnets), of the 40 aluminium ions in the 
unit cell, 16 form octahedra and 24 form tetrahedra. 
And in CaA1204, the calcium ions have three types of 
coordination polyhedron, one with Cx equal to 12 
and two with Cx equal to 6. Volumes of X and A1 
coordination polyhedra, calculated acoording to 
equations (1) and (2), are denoted by Vx and VA~ 
respectively. Of the eight XO6 octahedra in CaA1204, 
four have a volume of 17.53 A 3 and the other four a 
volume of 16.75A 3. Consequently, they are 
represented in two separate rows in the table. The 
quantity Vx/VA~ is simply the ratio of Vx to VA~, with 
f~nc representing the quantity defined in equation (3). 

It is immediately apparent that, apart from garnet 
(X3AlsOI2) and spinel (XAI204; X = Zn, Cu, Co, Mg, 
Ni) compounds, no simple correlation exists between 
space group and chemical composition. Five of the 
compounds, LaA103, YAIO3, BaA1204, CuA102 and 
SrA1407, are bimorphic, with the differences between 
their two structures reflected by the data in the table. 
The difference between the two LaA103 structures is 
very slight, the first being associated with the polar 
space group R3m, and the second having the centro- 
symmetric space group, R3m. 

In nearly all of the compounds, the cation coordi- 
nation polyhedra can be assigned unambiguously, 
simply by considering the distances of oxygen ions 
(polyhedral corners) from the cations inside each 
polyhedron. This is not the case in the two structures 
of lowest symmetry, PbAI204 (P1) and SrA1204 
(P20, in which the X ions (Pb and Sr) have a highly 
asymmetric coordination by oxygen ions. Thus the 
choice of octahedra in the table is only one of several 
possibilities. There is, however, a natural upper limit 
to the number of corners taken to define the coordi- 
nation polyhedra, as the overlapping of polyhedra, a 
consequence of taking too high a value for Cx, is 
forbidden. It is appropriate to remark that a struc- 
tural analysis based on Pauling's second rule cannot 
resolve this difficulty, since the total oxygen-ion 
valence of the unit cell, calculated from equation (4), 
is insensitive to changes in Cx. Although n i increases 
as Cx increases, so that each term in the summation, 
vc,i/ni, is diminished, the number of terms in the 
summation increases in a compensatory manner. 
This reflects the structural feature that each oxygen 
ion is shared between a greater number of polyhedra 
as Cx is increased. A quantitative means of defining 
the coordination number of a cation is, in principle, 
provided by the bond-valence method, as has been 
discussed by Allmann (1975), but this lies outside the 
scope of the present study. 

Within each family of compounds, it is seen that, 
for a given value of Cx, values of Vx generally 

decrease as the table is descended. This parallel 
decrease of Vx and r vl suggests that the r vl values 
are accurate general indicators of 'relative ionic size'. 
Values of VA~ depend on whether the polyhedron is a 
tetrahedron, a trigonal bipyramid or an octahedron, 
but they fall within narrow ranges: (VAn)tetra----2"741 
+-- 0"088 A 3 and (VAi)oct a ~--- 9.237 _+ 0.232 A 3. (In the 
evaluation of these ranges, the tetrahedral volumes 
for SrAI407 (ii) have been omitted, since their small 
values bring the accuracy of this structure into 
question. Octahedral volumes in CuA1204 and 
NiA1204 have also been omitted, since A1 and X ions 
are disordered in these structures.) 

Vx/VA~ and fenc are discriminating structural 
parameters. As discussed previously (Thomas, 
1989b), the ratio of cuboctahedral to octahedral 
polyhedral volume is exactly equal to 5 in all ferro- 
electric perovskites of general formula AB03. Of the 
perovskite structures examined here, only the first 
LaA103 polymorph is capable of exhibiting ferro- 
electricity, owing to its polar space group. Vx/VA~ is 
also equal to 5 in the second polymorph of LaAIO3 
and in PrAIO3, but as the size of the X ion decreases 
(expressed by rW), the cuboctahedral coordination 
polyhedron (Fig. l b) becomes distorted, to assume a 
smaller volume and Vx/VA~ ratio, as in NdAIO3 
(Vx/VA~ = 4"84). SmA103 and the first polymorph of 
YAIO3 have even smaller ratios, but the 
X-coordination polyhedron has now changed from a 
cuboctahedron into the octodecahedron shown in 
Fig. l(c). Thus these structures are arguably no 
longer perovskites, but perovskite-related structures. 
The bimorphism of YA103 suggests that the yttrium 
ion is only just big enough to be stabilized in this 
perovskite-related phase. The second YAIO3 struc- 
ture has Cx equal to 8 (Fig. l h) and CA~ equal to 5 
(Fig. l j), corresponding to a completely different 
structural type. And in ScA103, a further distinctive 
structure is observed. 

The fenc parameter has the value of unity in all 
perovskite and perovskite-related structures, which 
correspond to the first six entries in Table 1. Thus 
the X and A1 coordination polyhedra mesh together 
completely, filling all available space. It is interesting 
to note that f~nc is also equal to unity in RbA102 and 
T1A102, where the Rb + and T1 + ions occupy trun- 
cated tetrahedra (Fig. l d). In all the other structures, 

f e n c  is considerably less than unity, indicating that 
there are voids between cation coordination poly- 
hedra. The question naturally arises as to whether 
this void space can be used to accommodate guest 
ions in a given structure, a feature which may be 
important in phase-stabilization phenomena. These 
issues can only be resolved by a careful analysis of 
the voids in crystal structures, for which a computer 
algorithm has been expressly developed (Thomas, 
1991). 
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Amongst the garnet compounds, X3A150~2, values 
of Vx generally reflect the corresponding values of 
rx, with typical values for VAt in four- and sixfold 
coordination. Values of fenc indicate the presence of 
voids in the garnet structure. XA1204 compounds can 
be divided into two broad categories, depending on 
whether the aluminium ions have a coordination 
number of four or six. The former category is 
associated with larger X ions (X = Ba, Pb, Sr, Ca), 
and the latter with smaller ions. Bimorphic BaA1204 
has the barium ion in either 12- or ninefold coordi- 
nation, with the aluminium ion in fourfold coordina- 
tion. Note that in structures of lower symmetry, VAt 
is quoted as an average value, since there are several 
symmetry-independent A1 sites, with coordination 
tetrahedra of slightly differing volumes. If the 
volumes of the X coordination octahedra are con- 
sidered in the X = Pb, Sr, Ca systems, it is seen that 
their magnitudes decrease as the table is descended, 
in parallel with values of r vl. 

All compounds in this family with AI in sixfold 
coordination have the spinel structure, apart from 
BeA1204, after which the chrysoberyl structure is 
named. In two of the spinel structures (X = Cu, Ni), 
X and AI ions form both tetrahedra and octahedra, 
in a disordered fashion. Further evidence is found 
that Vx/VA~ is a discriminating structural parameter: 
in spinels, this ratio has values between 0.297 (X = 
Ni) and 0.416 (X = Zn), whereas in chrysoberyl (X = 
Be), Vx/VAI falls to the two values of 0-248 and 
0.230, corresponding to the two different aluminium 

octahedral volumes in this structure. Thus a change- 
over between spinel and chrysoberyl structures can 
be anticipated at some intermediate ratio in the 
range 0.248 < Vx/VA~ < 0"297. 

The six XA102 compounds all have different struc- 
tures, although the difference between RbAIO2 and 
TIA102 is concerned only with changes in symmetry. 
In both these compounds, the types of coordination 
polyhedra and the manner in which they fill space 
are identical. Note that Vx/VA~ is integral, with a 
value of 23. This is due to fixed geometrical con- 
straints, by analogy with the situation obtaining in 
perovskites. As r w falls, a structural change to that 
of NaA102 is observed, and finally the LiA102 struc- 
ture is obtained. Again Vx/VA~ is a useful structural 
indicator. In the case of the bimorphs of CuA102, 
values of Vx cannot be assigned, since layered 
'sandwich' structures are present, in which the Cu ÷ 
ions lie between monolayers of connected AIO6 octa- 
hedra, of composition AIO2--. The coordination 
number of the Cu + ions is two, thus precluding the 
definition of a cation coordination polyhedron. 

Amongst the compounds of composition XAI407, 
the first polymorph of SrA1407 and CaAI407 adopt 
similar structures, with Vx/VA~ ratios of 0.221 and 
0.217 respectively. Despite this similarity, r w is 
significantly smaller for Ca 2+ than it is for Sr 2+, 
suggesting that this structure may have a wide com- 
positional stability range. However, the bimorphism 
of SrA1407 indicates that ions larger than Sr 2+ are 
unlikely to be stabilized in this structure. In 

(a) (b) (c) (d) 

(e) (/) (g) 

(0 (J) 

(h) 

(k) (/) 

Fig. 1. Cation coordination 
polyhedra defined in Table 2, in 
clinographic projection. 
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CuzA1407, the Cu + ions have 12- and sixfold coordi- 
nation, unlike the twofold layer coordination found 
in CuA102 compounds. 

A1203 has been included only for comparative 
purposes: its VAI value of 9.08 A 3 is below the 
average VA~ value of the compounds studied. 

Characteristics of the cation coordination polyhedra 

Table 2 lists the characteristics of the cation coordi- 
nation polyhedra in these compounds. The shape of 
a given polyhedron can be described in terms of the 
numbers of its corners (vertices), edges and faces, 
represented in the table as Cx, Ex, Fx for X-cation 
polyhedra and as CAI, EAI, FA~ for Al-coordination 
polyhedra. Polyhedral types are stated in the table, 
and Fig. 1 shows all the different coordination 
polyhedra encountered in these compounds. The 
letters in the column of the table headed 'Fig'. 
indicate that part of Fig. 1 in which a particular 
polyhedral type is to be found. Note that each letter 
(a) to (/) is to be found against one structure only: it 
is the data of this structure which have been used to 
draw the relevant part of Fig. 1. 

It can be seen that all the X- and Al-coordination 
polyhedra obey Euler's law (Wells, 1956): 

C + F = E + 2 ,  (5) 

i.e. the sum of the numbers of corners and faces in 
any polyhedron is equal to two more than the 
number of edges. 

The columns headed C~-, E~, and F~ give the 
numbers of shared corners, edges and faces in X 
polyhedra, with a corresponding function for the 
columns headed CAb E~I and F~. Notice that each 
non-zero entry in these E and F columns has an extra 
code letter, a, x or m, adjacent to the number. These 
letters, indicate whether the edges and faces 
are shared with Al-coordination polyhedra, 
X-coordination polyhedra, or a mixture of AI- and 
X-polyhedra, respectively. The entries in these 
columns permit an objective assessment of the valid- 
ity of Pauling's third and fourth rules, which are 
concerned with the broad principles governing the 
sharing of polyhedral elements. The fourth rule deals 
specifically with crystals containing different cations, 
such as all the compounds here, apart from A1203. A 
strict observance of this rule for all coordination 
polyhedra would imply that X-polyhedral edges and 
faces are shared only with A1 edges and faces, and 
that A1 edges and faces are shared only with X edges 
and faces. However, this is only the case in XO4, 
A104 tetrahedra, and in the A105 trigonal bipyramid 
found in the second polymorph of YAIO3. In coordi- 
nation polyhedra with a coordination number 
greater than five, the sharing of edges between like 
polyhedra is relatively common: for example, in the 

spinel structure (XA1204; X = Zn, Cu, Co, Mg, Ni) 
six of the 12 Al-octahedral edges are shared with 
other AIO6 octahedra. And in all the larger X 
polyhedra, no particular tendency towards sharing 
with A1 polyhedra is observed. 

The sharing of faces of polyhedra is, as suggested 
by Pauling's third rule, comparatively uncommon. 
However, it is unavoidable in structures where fenc is 
equal to unity. Particularly worthy of note is the 
presence of shared edges and faces in alumina, 
A1203. This is rather surprising in view of Pauling's 
third rule, but the reason for this is discussed in the 
following section. 

Calculation of electrostatic oxygen-ion valences 

Table 3 gives the valences of each oxygen ion in the 
unit cell for all the structures. These valences are the 
so-called electrostatic valences, calculated from equa- 
tion (4). The column headed No gives the number of 
oxygen ions in the unit cell, with the column headed 
'oxygen-ion valences, Vo' giving the valences of each 
oxygen ion. These are represented as a valence, 
multiplied by its frequency of occurrence. For 
example in the second polymorph of BaA1204 
[hereafter written as BaA1204 (ii), with a similar 
notation for other bimorphs], two oxygen ions have 
a calculated valence of 2.1667 and six have a calcu- 
lated valence of 1-9444. The column headed Vo,,o, 
gives the total calculated oxygen-ion valence for the 
unit cell, which is obtained by summing all the 
calculated oxygen valences. Thus in BaA1204 (ii), for 
example, 2.1667 x 2 + 1.9444 × 6 = 16. As discussed 
in step 9 of the method, the definition of electostatic 
valence requires that Vo.,ot is equal to the sum of the 
cationic valences. Since, by the electroneutrality prin- 
ciple, this sum is also equal to the sum of anionic 
valences, Vo.,ot = 2No. The right-hand column gives 
the workings of calculating Vo from equation (4), 
which permit the manner in which polyhedral 
corners are shared to be inferred. For example, in 
YA103 (ii), the two oxygen ions with Vo equal to 2.55 
are shared between two X polyhedra with Cx equal 
to 8 and three A1 polyhedron with CA~ equal to 5. 
Similarly the four oxygen ions with Vo equal to 1-725 
are shared between three X polyhedra with Cx equal 
to 8 and one A1 polyhedron with CA~ equal to 5. 

For structures in which every oxygen ion has an 
identical topological coordination, in the sense that 
identical numbers and types of cation coordination 
polyhedra share a corner at each oxygen ion, Vo is 
equal to 2 for each oxygen ion. This is a corollary of 
the electroneutrality principle, which requires that 
Vo.tot = 2No. Since, in this case, each oxygen ion is 
topologically equivalent, Vo,,ot = Novo, so Vo = 2. It 
follows also that the valence condition [equation (4)] 
applying at each oxygen ion is identical to a state- 
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Chemical 
formula 
XA103 

Table 2. Attributes of the cation coordination polyhedra 

Polyhedral Polyhedral 
X Cx Ex Fx type* Fig. C,~ E~, F7¢ CAj EAj FAI type* Fig. C~, E ~  F~t 
La 12 24 14 co (b) 12 24m 14m 6 12 8 o 6 12x 8x 
La 12 24 14 co 12 24m 14m 6 12 8 o 6 12x 8x 
Pr 12 24 14 co 12 24m 14m 6 12 8 o 6 12x 8x 
Nd 12 24 14 co 12 24m 14m 6 12 8 o 6 12x 8x 
Sm 12 28 18 od (c) 12 28m 18m 6 12 8 o 6 12x 8x 
Y 12 28 18 od 12 28m 18m 6 12 8 o 6 12x 8x 
Y 8 12 6 cu (h) 8 12m 0 5 9 6 tbp (/) 5 6x 0 
Sc 9 20 13 ap4c (]) 9 18m 2a 6 12 8 o 6 12x 2x 

X3A15Oj, Tb 8 18 12 tdd 8 10m 0 6 12 8 o 6 6x 0 
4 6 4 t 4 2x 0 

Ho 8 18 12 tdd 8 10m 0 6 12 8 o 6 6x 0 
4 6 4 t 4 2x 0 

Y 8 18 12 tdd (g) 8 10m o 6 12 8 o 6 6x 0 
4 6 4 t 4 2x 0 

Lu 8 18 12 tdd 8 I 0m 0 6 12 8 o 6 6x 0 
4 6 4 t 4 2x 0 

XAl20, Ba 12 30 20 ic (a) 12 20m 8m 4 6 4 t 4 6x 2xt 
12 30 20 ic 12 23m 4m 

Ba 9 20 13 ap4c 9 12m 2x 4 6 4 t 4 3x 0 
Pb 6 12 8 o 6 2a 0 4 6 4 t 4 lx 0 
Sr 6 12 8 o 6 4m Ix 4 6 4 t 4 0.5xt 0 

6 12 8 o 6 5rn lx 
Ca 12 30 20 co 12 21 m 5m 4 6 4 t 4 3xi" 0.5x't 

6 12 8 o 6 4m Ix 
6 12 8 o 6 5m Ix 

Zn 4 6 4 t (/) 4 0 0 6 12 8 o 6 6a 0 
Cu 4 6 4 t 4 0 0 6 12 8 o 6 6a 0 
Co 4 6 4 t 4 0 0 6 12 8 o 6 6a 0 
Mg 4 6 4 t 4 0 0 6 12 8 o 6 6a 0 
Ni 4 6 4 t 4 0 0 6 12 8 o 6 6a 0 
Be 4 6 4 t 4 3a 0 6 12 8 o 6 6m 0 

6 12 8 o 6 3m 0 

XAIO2 Rb 12 18 8 tt (d) 12 18m 8m 4 6 4 t 4 6x 4x 
TI 12 18 8 tt 12 18m 8m 4 6 4 t 4 6x 4x 
Na 6 12 8 o (k) 6 12m 0 6 12 8 o 6 12m 0 
Cu 2 - Is 2 - 6 12 8 o 6 6a 0 
Cu 2 - Is 2 - 6 12 8 o 6 6a 0 
Li 4 6 4 t 4 la 0 4 6 4 t 4 Ix 0 

XAI,O7 Sr 7 15 10 td 7 6m 0 4 6 4 t 4 0 0 
4 6 4 t 4 2x 0 

Sr 10 20 12 ap5 (e) 10 14m 2x 6 12 8 o 6 6m 0 
4 6 4 t 4 0 0 
4 6 4 t 4 3x 0 

Ca 7 14 10 td (i) 7 6m 0 4 6 4 t 4 2x 0 
4 6 4 t 4 0 0 

Cu_, 12 24 14 co 12 24m 4 4 6 4 t 4 3x 0 
6 12 8 o 6 12x 4 

A 1 2 0 3  . . . . . .  6 12 8 o 6 6a la 

* Abbreviations used are: ap4c capped quadrilateral antiprism, ap5 pentagonal antiprism, co cuboctahedron, cu distorted cube, ic icosahedron, ls layer 
structure, o octahedron, od octodecahedron, t tetrahedron, tbp trigonal biprism, td trigonal decahedron, tdd trigonal dodecahedron, tt truncated 
tetrahedron. 

t Average value. 

ment of the electroneutrality principle. For example, 
in X3AlsOi2 compounds, the condition 2vx/8 + VA~/6 
+ VAI/4 = 2 can be rearranged to give 3Vx + 5VA~ = 
24. This is identical to the equation which can be 
derived at sight from the chemical formula, merely 
by applying the electroneutrality principle. In struc- 
tures where non-equivalent oxygen ions exist, how- 
ever, individual values of Vo deviate from 2, subject 
to the overall constraint imposed by the principle of 
electroneutrality, that Vo,to t = 2 N  O. These conclusions 
may be summarized by stating that the average 
oxygen-ion valence, when calculated from equation 
(4), must be equal to 2. 

Pauling's second rule applied to oxides states that 
each value of Vo is equal, or nearly equal to 2. 

However, Table 3 shows significant deviations from 
2 in structures with non-equivalent oxygen ions. The 
largest deviation is found in Cu2A1407, where four 
oxygen ions have a value of Vo equal to 3. So, as is 
well known, the second rule is to be applied with 
caution. 

A further investigation into the validity of this rule 
can be made by monitoring the effect on calculated 
values of Vo of substituting cations of different 
valences into the structures with non-equivalent 
oxygen ions. (In all structures with topologically 
equivalent oxygen ions, any set of valences satisfying 
the electroneutrality principle will automatically sat- 
isfy Pauling's second rule exactly.) The results of this 
investigation are given in Table 4. A structure of 
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C h e m i c a l  

f o r m u l a  

XAIO3 

X3AIsOI2 

XAI204 

XA102 

XAhO7 

A1203 

X 

La 
La 
Pr 
Nd  
Sm 
Y 
Y 

Sc 

Tb,Ho} 
Y,Lu} 

Ba 
Ba 

Pb 

Sr 

Ca 

Zn, Cu} 
Co, Mg, Ni} 

Be 

Rb 
TI 
Na  
Cu 
Cu 
Li 

Sr 

Sr 

Ca 

Cu2 

Table 3. Oxygen-ion valences calculated from equation (4) 
O x y g e n - i o n  V a l e n c e  c o n d i t i o n s  a t  o x y g e n  

VX VAI NO v a l e n c e s ,  Vo Vo .... i o n s  [ e q u a t i o n  (4)] 

3 3 3 2.0000 × 3 6 4Vx/12 + 2v^1/6 = 2 
3 3 6 2.0000 x 6 12 4vx/12 + 2v^1/6 = 2 
3 3 6 2.0000 x 6 12 4Vx/12 + 2v^1/6 = 2 
3 3 18 2.0000 x 18 36 4vx/12 + 2vAi/6 = 2 
3 3 12 2.0000 x 12 24 4Vx/12 + 2VAt/6 = 2 
3 3 12 2"0000 x 12 24 4Vx/12 + 2VA~/6 = 2 
3 3 6 2"5500 x 2 12 2Vx/8 + 3VAt~5 = 2"55 

1"7250 x 4 3Vx/8 + VAj/5 = 1"725 
3 3 12 2"0000 x 12 24 3Vx/9 + 2Val/6 = 2 

3 3 96 2"0000 x 96 192 2Vx/8 + VAI/6 + VAj/4 = 2 

2 3 32 2"0000 × 32 64 3Vx/12 + 2V^,/4 = 2 
2 3 8 2"1667 × 2 16 3Vx/9 + 2v^, /4 = 2"1667 

1"9444 × 6 2Vx/9 + 2v^, /4 = 1-9444 
2 3 8 2"1667 × 4 16 2Vx/6 + 2v^, /4  = 2"1667 

1"8333 X 4 Vx/6 + 2V^t/4 = 1"8333 
2 3 16 2"1667 x 8 32 2Vx/6 + 2VAt/4 = 2"1667 

1"8333 X 8 VX/6 + 2Vat/4 = 1"8333 
2 3 48 2"i667 × 12 96 2Vx/6 + 2V^,/4 = 2"1667 

2"0000 x 24 vx/12 + v x / 6  + 2vAj/4 = 2 
1'8333 x 12 Vx/6 + 2v^~/4 = 1"8333 

2 3 32 2"0000 x 32 64 vx/4  + 3v^~/6 = 2 

2 3 16 2"0000 x 16 32 Vx/4 + 3VAt/6 = 2  

1 3 16 2"0000 x 16 32 6Vx/ 12 + 2v^a/4 = 2 
1 3 12 2"0000 x 12 24 6Vx/ 12 + 2VAI/4  = 2 
1 3 6 2"0000 x 6 12 3Vx/6 + 3VAt/6 = 2 
I 3 4 2"0000 × 4 8 VX/2 + 3V^~/6 = 2 
1 3 6 2"0000 x 6 12 Vx/2 + 3V^~/6 = 2 
1 3 8 2'0000 x 8 16 2V~/4 + 2V^~/4 = 2 

2 3 28 2"2500 x 8 56 3VAI/4 = 2"25 
2"0714 X 8 2Vx/7 + 2V^~/4 = 2"0714 
1"7857 x 12 VX/7 + 2V^~/4 = !"7857 

2 3 28 2"2000 X 16 56 Vx/IO +V^~/6 + 2VA~/4 = 2'2 
1"6500 x 8 2vx/ lO + VAI/6 + V^I/4 = 1"65 
1"9000 X 4 2Vx/IO + 2VAI/4 = 1"9 

2 3 28 2"2500 X 8 56 3VAj/4 = 2"25 
2"0714 × 8 2Vx/7 + 2VA~/4 = 2"0714 
1"7857 X 12 VX/7 + 2VA~/4 = 1"7857 

1 3 28 3"0000 × 4 56 4VAI/4 = 3 
1"8333 x 24 2vx/12  +Vx/6 + 2VAI/4 = 1'8333 

3 18 2"0000 x 18 36 4vAj/6 = 2  

formula X p A l q O r  may be generalized to one of for- 
mula Xp YqO,, in which X and Y are allowed to take 
on any integral valences which are consistent with 
the electroneutrality principle. Thus BaAI204 (ii) is 
generalized to XY204, such that Vx + 2vy = 8. Four 
pairs of valences are permitted: (Vx, Vr)= (6,1), (4,2) 
(2,3), (0,4), where the assignment of Vx--0 implies 
that the X-coordination polyhedron is vacant, i.e. the 
composition is YO2. 

For each pair of (vx, vr) values in the table, the 
r.m.s, deviation of Vo values from the ideal Pauling 
value of 2 is quoted. The deviation corresponding to 
the actual chemical composition, where Y corre- 
sponds to A1 and v r is equal to 3, is denoted by an 
asterisk. It is seen that this deviation is not always 
the smallest one, i.e. substitution of ions of different 
valences into the structure can give a closer 
agreement with Pauling's second rule than the actual 

values associated with the composition in the left- 
hand column. In the YA103(ii) structure, for 
example, the closest agreement with Pauling's rule is 
to be found for a composition XS+Y+O 3. Similarly in 
the Cu2A1407 structure, the actual composition is 
associated with a deviation of 0.717, although exact 
agreement with the rule would be obtained for a 
c o m p o s i t i o n  X 3  + Y,~ + O 7  . 

These findings reinforce the conclusion that Paul- 
ing's second rule should be treated with caution in 
analysing the structures of ionic oxides. It appears 
that the maintenance of electroneutrality, together 
with the requirement for cations to be coordinated 
by anions, and vice versa, are the minimum 
requirements to be satisfied by ionic oxides. Whereas 
the calculation of oxygen-ion valences according to 
equation (4) is a useful analytical technique, the 
requirement that each oxygen-ion valence is equal, or 
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Table 4. Root-mean-square deviations of oxygen-ion 
valences from the ideal value of 2, for different com- 
binations of cations satisfying the electroneutrality 

condition 

Deviat ions  are non-zero  only in s tructures conta in ing  topologica l ly  non- 
equivalent  oxygen ions. 

Structure  
and electro- R.m.s devia t ion of  oxygen- ion valences, Vo, 
neutral i ty  for different pairs  of  cat ionic  valences, 
condi t ion X Y v x  and v r  ( vx ,  v r ,  r.m.s, deviat ion)  

YAIO3 (ii) Y AI (6,0, 0.395) (5,1, 0.119) (4,2, 0.158) 
vx + vv = 6 (2,4, 0.712) (1,5, 0.988) (0.6, 1.265) 

BaAI204 (ii) Ba AI (6,1, 0.373) (4,2, 0.248) (2,3, 0.124)* 
vx + 2vr  = 8 

PbAI204 Pb AI (6,1, 0.500) (4,2 0.333) (2,3, 0.167)* 
Vx + 2vv = 8 

CaAI204 Ca AI (6,1, 0.408) (4,2, 0.272) (2,3, 0-136)* 
Vx + 2vv = 8 

SrAI204 Sr AI (6,1, 0-500) (4,2, 0.333) (2,3, 0.167)* 
vx + 2vv = 8 

SrAI407 (i) Sr AI (6,2, 0-510) (2,3, 0.195)* 
vx + 4vv = 14 

SrA1407 (ii) Sr AI (6,2, 0.123) (2,3, 0.240)* 
vx + 4vv  = 14 

CaAI407 Ca AI (6,2, 0.510) (2,3, 0.195)* 
Vx + 4 v r  = 14 

Cu2AI407 Cu AI (5,1, 0.717) (3,2, 0.000) (1,3, 0.717)* 
vx + 2vv = 7 

* Values of  ( vx ,  vv ,  r.m.s, deviat ion)  for compos i t ion  in left-hand column. 

(3,3, 0-435)* 

(0,4, 0"000) 

(0,4, 0"000) 

(0,4, 0"000) 

(0,4, 0-000) 

is nearly equal to 2 is too tight a constraint. Thus 
Pauling's second rule is routinely violated in metal 
oxides. 

Despite this limitation, the concept of electrostatic 
bond strengths, embodied in equation (4), can be 
invoked to consider the reasons for the existence of 
shared edges and faces in alumina, A1203. According 
to Pauling's rules, these would be associated with a 
relatively unstable structure. However, this is not the 
case, as the A1203 (corundum) structure is stable 
over a wide range of temperature and pressure. 

In the case of A106 octahedra, the strength of each 
AI--O bond is 3/6 = 0.5. Thus, if each oxygen ion is 
to be equivalent, as is the case in alumina, four 
octahedra must meet at each oxygen ion. It is the 
requirement of these four octahedra meeting which 
results in the presence of shared edges and faces. 
Clearly, fewer polyhedra would be required to meet 
at common vertices if the bond strength of each 
AI--O interaction were greater. This can only be 
achieved through the adoption of coordination 
polyhedra with fewer vertices, e.g. tetrahedra. How- 
ever, if A104 tetrahedra were to be adopted in the 
crystal structure of A1203, the strength of each 
A1--O bond would be 3/4--0.75. This is incompat- 
ible with each oxygen ion being topologically equiva- 
lent, since 2/0.75 is non-integral. Thus the 
octahedron is adopted as the coordination polyhe- 
dron in alumina, even though this results in shared 
edges and faces. 

If the requirement that each oxygen ion be topo- 
logically equivalent were waived, it is possible to 
conceive of an A1203 structure based on A104 tetra- 

hedra. This would consist of some oxygen ions 
('type-1 ions') shared between three tetrahedra, and 
others ('type-2 ions') shared between two. Since the 
valence of type-1 ions would be 2-25, and that of 
type-2 ions would be 1.5, an average oxygen-ion 
valence of 2 would be obtained from a 2:1 ratio of 
the number of type-1 oxygen ions to the number of 
type-2 oxygen ions. 

The electroneutrality principle itself can provide 
helpful insight into the structural principles of these, 
and other compounds. In the above example of 
BaA1204 (ii), the valence pair (Vx, Vr)= (0,4) is con- 
sistent with the condition that Vx+ 2vy= 8. Thus 
this structure can be regarded as a derivative of a 
binary oxide, which, from Table 2, consists of YOn 
tetrahedra sharing corners. When the valence of the 
Y ion falls below 4, an X ion of the appropriate 
valence is accommodated in a polyhedron with Cx 
equal to 9, in order to preserve neutrality. Similarly, 
YAIO3 (ii) can be regarded as a derivative either of 
an )(6 + 03 or of a y6 + 03 structure, corresponding to 
the (Vx, Vr) pairs (6,0) and (0,6). However, these two 
binary oxides are quite dissimilar, the former consist- 
ing of corner- and edge-linked XO8 cubes, and the 
latter made up of corner- and edge-linked YO5 trigo- 
nal bipyramids (see Table 2). 

By comparison, all the compounds of formula 
XAI407 cannot be regarded as structural derivatives 
of a parent binary oxide, since the appropriate elec- 
troneutrality condition does not permit a (Vx, Vr) 
combination in which either vx or vr is equal to zero. 
However, these compounds themselves may be 
'parents' of structural derivatives of complex, quater- 
nary oxides of general formula Xp YqZrOs. In order to 
make a final judgement on this matter, a closer 
examination of their void space is required. 

Other compositions in Table 3, with equivalent 
oxygen ions, can be analysed in this manner. The 
electroneutrality condition of the garnet structure, 
X3AIsO12, which is given by 3Vx + 5VA~ = 24, is satis- 
fied only by (Vx, Vr)=(3,3). Thus this structure 
cannot be regarded as a derivative of a binary oxide. 
This contrasts with the situation in the spinel struc- 
ture, where the less restrictive condition, Vx + 2v~, = 
8, permits the values (vx, vr) = (0,4). Thus this struc- 
ture can be regarded as a structural derivative of a 
binary oxide of composition YO2, which, according 
to Table 2, consists of corner- and edge-shared octa- 
hedra. 

Predicting the existence of isostructural compositions 

The above analysis permits the following basic con- 
clusions to be drawn. 

(i) The calculation of polyhedral volumes and their 
ratios is a discriminating method of characterizing 
different structures. 
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(ii) The ionic radii of Shannon (1976) for octahe- 
drally coordinated cations are reliable and useful 
indicators of 'relative ionic size.' 

(iii) In any ionic structure, the total oxygen-ion 
valence of a unit cell, calculated from equation (4), is 
always equal to the total cationic valence. 

(iv) The electroneutrality principle restricts the 
valences of the ions which may be found in a given 
type of structure. 

Conclusions (i), (ii) and (iv) may be used to define 
a general method for predicting hypothetical com- 
positions most likely to adopt structures identical to 
known crystal structures, such as the ternary oxides 
studied here. This method is based on the fact that 
the volume of any regular polyhedron can be 
expressed in terms of the distance, r, from its centre 
to each of the (equidistant) vertices. In general this 
volume, Vpoly , is equal to Npolyr 3, where, for example, 
Npo~. has the value of 4/3 for a regular octahedron, 
8(3)b2/27 for a regular tetrahedron and 10/3(2) 1/2 
for a regular cuboctahedron. 

This dependence of polyhedral volume on r can be 
generalized to a semi-empirical expression of the 
form of equation (6): 

Vpoly = Upoly(K~r vt + ro) 3. (6) 

In this expression, Vpo~y is the actual volume of a 
cation coordination polyhedron with n vertices in a 
given structure (as given, for example, by Vx, VA~ in 
Table 1). rff I is the radius given by Shannon for a 
cation in sixfold coordination, and K,, is a factor 
used to convert from a sixfold to an n-fold coordi- 
nated ionic radius, re,,,, ro is the appropriate radius 
for an oxygen ion, which is weakly dependent on the 
number of its coordinating cations (Shannon, 1976). 
Npoty, however, no longer has a fixed value, but it is 
treated as a semi-empirical parameter given by Vpo~y/ 
(K,,rVI+ ro) 3. The variation in values of Npoly for a 
given type of polyhedron and cation from one struc- 
ture to another reflects subtle changes in its size and 
shape, i.e. whether the coordination polyhedron is 
expanded, compressed or distorted. 

Values of Kn correspond to mean values of the 
ratio rcJr  w over all cations whose n-fold coordi- 
nated radii have been quoted by Shannon. The fol- 
lowing values have been adopted: K4 0.75760, K5 
0-91147, K6 1.00000, K7 1.07001, /(8 1.14242, /(9 
1.16611, Kl0 1.17771, Kll 1"17128, K~2 1-26287. This 
definition of n-fold coordinated ionic radii is more 
general than one based on the actual n-fold coordi- 
nated radii given by Shannon, since these are not 
quoted for all ions. It also embodies the principle 
that the roy ~ ionic radii are to be used as parameters 
representing relative ionic size. 

The values of Npo~y calculated are characteristic of 
a given structure. The other parameters characteristic 
of the different structures are the polyhedral volume 

ratios, e.g. VxlVA~ in Table 1. In a structure with n 
different polyhedra, ( n - 1 )  independent polyhedral 
volume ratios may be defined. 

In searching for other compositions which can 
adopt a given structure, the so-called "generating 
structure', the volume of the unit cell should be 
capable of being increased or decreased, as the 
volumes of cation coordination polyhedra change. 
This is implicitly accommodated by employing a 
search/match procedure based on polyhedral volume 
ratios. Once Npoly values have been calculated for 
every different polyhedron in the generating struc- 
ture, the volumes, l/'poly, all cations of known r v~ 
would adopt in these polyhedra are calculated, using 
equation (6). Since the generating structure has fixed 
polyhedral volume ratios, only combinations of 
cations with simlar volume ratios may have the same 
structure. Two further considerations limit the 
number of isostructural compositions generated: 
first, the electroneutrality condition of the generating 
structure must be obeyed by the cations; and 
secondly, no generated structure with a minimum 
O - - O  separation below a certain limit, taken as 
2-5 A, is allowed. 

The search/match procedure evaluates the polyhe- 
dral volume ratios, [V2/Vi]c,~lc, [V3/Vl]calc, etc. for 
every cation with a known r w value. VI, 1/'2, V3 refer 
to the volumes of different polyhedra, Vpob,, which 
are calculated from equation (6) using the (Nr, o~y)x 
and (Npoly)Y values of the generating structure. The 
closest fit is determined by evaluating the ratios of 
the calculated V2/V~, V3/V~ values to the correspond- 
ing V2/V~ and V3/V~ values in the generating struc- 
ture, denoted by [vJVdgs, etc. in Table 5. The better 
the fit, the closer these ratios are to unity. Thus the 
criterion used to monitor closeness of fitting is the 
r.m.s, deviation of these values from unity, quoted in 
the column headed 'R.m.s.d.'  in Table 5. Clearly, a 
deviation of zero is associated with ions correspond- 
ing to the generating structure itself. 

In this table, the column headed 'd~:~-o' gives the 
minimum O - - O  separation in the generated struc- 
ture. The five closest fits are given for each generat- 
ing structure. Thus the YA103 (i) structure can also 
be adopted by Nd 3 + Cr 3 + 03, Pa 3 ÷ Ti 3 + 03 ,  

Tm 2 + W 4+ 03 and Eu 3 ÷ As 3 + 03. Similar interpreta- 
tions can be given for the other generating structures. 

It is interesting to note that the numbers of gener- 
ated compositions with an r.m.s, deviation smaller 
than 0.02 vary widely. The chrysoberyl structure 
gives rise to no fewer than 125 compositions, 
whereas the BaA1204 (ii) structure generates only 
four. Thus the former structure is expected to be 
much more common. 

A brief comparison of the results for RbA102 and 
T1A102 is also interesting. As discussed above, these 
two structures are topologically identical, yet they 
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Table 5. A selection of  the structures studied, with some of the hypothetical compositions most likely to adopt 
identical structures 

L S  d e n o t e s  l o w - s p i n  s t a t e  o f  cation. 

Generating structure, Ions substituted 
eleetroneutrality into structure [ V2/V~]~,~c [ I/3/V~]~,~c 
c o n d i t i o n  a n d  Npoty v a l u e  (1)  (2)  (3)  [V2/V,]~ [V3/V,]~ d g ~ o  ( A )  R . m . s . d .  

YAIO3 (i) AI 3 ÷ y3  + _ 1.00000 - 2.666 0.00000 
vx + vr  = 6 Cr  3 + Nd 3 + - 0.99994 - 2.776 0.00006 
(Npo,y)x = 2.5488 Ti 3÷ Pa 3+ - 0.99981 - 2.852 0-00019 
(N~ly)r  = 1"2836 W 4÷ T m  2. - 1"00035 - 2"839 0.00035 

A S  3 * EU 3 ÷ - 1.00042 - 2"728 0-00042 

Tota l  n u m b e r  of  compos i t i ons  indentif ied wi th  R.m.s.d.  < 0 .02 :105  

YAIO3 (ii) AI 3 + y3  + _ 1.00000 
vx + vv = 6 Ag  3÷ Ac ~ + - 0.99916 
(N~oly)x = 1.4088 As  3÷ Eu 3÷ - 1.00113 
(Nvoiy)r = 1.0571 Mn3+(LS) Eu 3. - 1-00113 

Cr  ~ * Nd 3 ÷ _ 1-00122 

To ta l  n u m b e r  o f  compositions identified with R.m.s.d.  < 0 .02 :109  

BeA1204 AI 3 + AI 3 ÷ Be 2 + 1.00000 
vr + 2vr = 8 Ti 3+ Ti 3 ÷ Fe2÷(LS) 1.00000 
(Nr~ty)x = 0"4291 Nb  3 ÷ N b  3" M n  2 ÷ (LS) 1.00000 
(Npo~y) v = 1.2593, 1.3562 Ta  3 ÷ Ta  3 ÷ Mn  2" (LS) 1.00000 

T m  3" T m  3 * Pd 2 ÷ I '00000 

To ta l  n u m b e r  of  compositions identified with R.m.s.d.  < 0 .02 :125  

RbA102 A13 + Rb ÷ - 1 "00000 
vx + vr  = 4 Rh 3 ÷ Cs + - 1'00095 
(Npo~y)x = 1-8852 Ti  3 ÷ Cs ÷ - 0.99506 
(NvoJy) v = 0"4239 Cu  3 ÷ (LS) Rb  + - 0-99380 

Co 3 + (LS) Rb  + - 0 '98675 

Tota l  n u m b e r  o f  compositions identified with R.m.s.d.  < 0 . 0 2 : 8  

TIAIO2 AI 3 ÷ TI ÷ 1"00000 
Vx + vr = 4 in  ~ ÷ F r  ÷ 0.99833 
(Npoty)x = 1"8563 Fe3+(LS) Rb  ÷ 1.00318 
(Npo,y) r = 0.4084 Ir  3 + Cs * 1.00509 

Ru 3 ÷ Cs ÷ 1.00509 

Tota l  n u m b e r  o f  compositions indentified with R.m.s.d.  < 0 . 0 2 : 1 4  

BaAI204 (ii) AI 3 ÷ Ba 2 ÷ 1.00000 
vx + 2vr = 8 Cu3+(LS) Ba 2+ 0.99366 
(Nr.o~y)x = 1"6229 Co3+(LS) Ba 2" 0.98738 
(N~o~y) r = 0.4940 Fe 3 + (LS) Ba 2 ÷ 0.98114 

Tota l  n u m b e r  of  compositions identified with R.m.s.d.  < 0 -02 :4  

2-672 0-00000 
2-948 0-00084 
2"731 0"00113 
2.731 0"00113 
2.776 0-00122 

I '00000 2'517 0 '00000 
0"99983 2-694 0-00012 
1.00067 2.760 0-00047 
1.00067 2.760 0.00047 
1"00086 2"970 0"00061 

2.797 0"00000 
2.947 0.00095 
2'948 0"00494 
2.797 0-00620 
2.797 0"01235 

2.716 0.00000 
3.012 0.00167 
2.732 0-00318 
2-879 0.00509 
2.879 0.00509 

2.792 0.00000 
2"792 0.00634 
2-792 0.01262 
2'792 0"01886 

have different space groups. None of the generated 
compositions listed in the table are common to the 
RbA102 and TIA102 structures, although these do 
exist, with larger r.m.s, deviations. Thus the com- 
position T1A102 can be generated in the RbA102 
structure with a deviation of 0-02156, and the com- 
position RbAIO2 can be generated in the T1AIO2 
structure with a deviation of 0.02203. It is possible 
that those compositions which fit the RbA102 struc- 
ture most closely will have the space group Fd3m, 
and those closest to the T1A102 structure will have 
space group R3m, but this remains to be proven. 

In more general terms, the sensitivity of the 
method to subtle changes in polyhedral coordination 
makes it potentially useful in identifying further 
compositions with a particular, desired structure. 
This structure may be specific to a given type of 
physical property, e.g. ferroelectricity or piezoelectri- 
city, in which the space-group symmetry may also 

play an important role (Thomas, 1989b; Abrahams, 
1989). The framework described, incorporating 
polyhedral volumes, standard ionic radii and electro- 
static bond strengths, is a useful tool for the systema- 
tic exploration of new compositions for materials 
with certain desirable physical properties. 

References 

A B R A H A M S ,  S .  C .  ( 1 9 8 9 ) .  Acta Cryst. B 4 5 ,  2 2 8 - 2 3 2 .  

A L L M A N N ,  R .  ( 1 9 7 5 ) .  Monatsh. Chem. 1 0 6 ,  7 7 9 - 7 9 3 .  

B R O W N ,  I .  D .  ( 1 9 8 1 ) .  Structure and Bonding in Crystals, V o l .  2 ,  

edited b y  M .  O ' K E E F E  & A .  N A V R O T S K Y ,  p p .  1 - 3 0 .  L o n d o n :  

A c a d e m i c  Press. 
P A U L I N G ,  L .  ( 1 9 6 0 ) .  The Nature of the Chemical Bond, 2 n d  e d .  

Ithaca: C o r n e l l  U n i v .  Press. 
S H A N N O N ,  R .  D .  ( 1 9 7 6 ) .  Acta Cryst. A 3 2 ,  7 5 1 - 7 6 7 .  

T H O M A S ,  N .  W .  ( 1 9 8 9 a ) .  U n p u b l i s h e d  w o r k .  

T H O M A S ,  N .  W .  ( 1 9 8 9 b ) .  Acta Cryst. B 4 5 ,  3 3 7 - 3 4 4 .  

T H O M A S ,  N .  W .  ( 1 9 9 1 ) .  Acta Cryst. B 4 7 .  I n  the press. 
W E L L S ,  A .  F .  ( 1 9 5 6 ) .  The Third Dimension in Chemistry. O x f o r d :  

C l a r e n d o n  Press. 


